canlib
Release 1.22.565

Kvaser AB <support@kvaser.com)

Sep 13, 2022

CONTENTS

1 Contents 3
1.1 Welcome e e e e e e 3
1.2 Supported Libraries and Installation oL oo 3
1.3 Tutorials e e e e e 6
1.4 Usingcanlib (CANIb) o e e e e e e 14
1.5 Examples o o o e e e e e e e e e e e e e e 34
1.6 Reference e e e e 65
2 Release Notes 241
2.1 Release NOteS o i e e e e e e e 241
Python Module Index 253
Index 255

canlib, Release 1.22.565

The canlib module is a Python wrapper for Kvaser CANIlib SDK.

“The CANIib Software Development Kit is your Application Programming Interface for working with all Kvaser hard-
ware platforms.”

Using the Python canlib package, you will be able to control most aspects of any Kvaser CAN interface via Python.

CONTENTS 1

https://www.kvaser.com/developer/canlib-sdk/

canlib, Release 1.22.565

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Welcome

The canlib package is a Python wrapper for Kvaser CANIib SDK.

“The CANIib Software Development Kit is your Application Programming Interface for working with all Kvaser hard-
ware platforms.”

Using the Python canlib package, you will be able to control most aspects of any Kvaser CAN interface via Python.

canlib - a Python wrapper for Kvaser CANlib

1.2 Supported Libraries and Installation

The Python canlib module wraps the Kvaser CANIib API in order to make it easy to control most aspects of any Kvaser
CAN interface. For more information about Kvaser please go to https://www.kvaser.com/.

The latest version of this package is available on the Kvaser Download page (pycanlib.zip).

1.2.1 Supported platforms

Windows and Linux using Python v3.6+ (both 32 and 64 bit).

1.2.2 Supported libraries

The following libraries are currently supported:

https://www.kvaser.com/developer/canlib-sdk/
https://www.kvaser.com/
https://www.kvaser.com/downloads-kvaser/
https://www.kvaser.com/downloads-kvaser/?utm_source=software&utm_ean=7330130981911&utm_status=latest

canlib, Release 1.22.565

Library Module Windows Linux
CANIlib can- canlib32.dll libcanlib.so
lib.canlib
kvaMem- can- kvaMemoLibXML.dll libkvamemolibxml.so
oLibXML | lib.kvamemolibxml
kvrlib canlib.kvrlib | kvrlib.dll, irisdll.dll, irisflash.dll, | not supported
libxml2.dll
kvmlib can- kvaMemoLib0600.d1l, kvaMemo- | not supported,2 libkvamemolib0700.so,
lib.kvmlib Lib0700.d11, kvaMemoLib.dll, kvmlib.dll | libkvamemolib.so, libkvmlib.so
kvlclib can- kvlclib.dll” libkvlclib.so
lib kvlclib
kvaDbLib | can- kvaDbLib.dll libkvadblib.so
lib.kvadblib
LINIib canlib.linlib | linlib.dll liblinlib.so

1.2.3 Installation

Install the Python package from PyPI using e.g. pip:

$ pip install canlib

If you have downloaded the package zip file from the Kvaser Download page, first unzip pycanlib. zip. Then navigate
to the unzipped pycanlib using the command line. It should contain the file canlib-x.y.z-py2.py3-none-any.whl,
where x,y,z are version numbers. Run the following command:

$ pip install canlib-x.y.z-py2.py3-none-any.whl

The Kvaser CANIlib DLLs or shared libraries also need to be installed:

Windows

On Windows, first install the canlib32.d11 by downloading and installing “Kvaser Drivers for Windows” which can
be found on the Kvaser Download page (kvaser_drivers_setup.exe) This will also install kvrlib.d11, irisd1l.d1l,
irisflash.dll and libxml2.d11 used by kvrlib.

The “Kvaser CANIib SDK” also needs to be downloaded from the same place (canlib.exe) and installed if more than
just CANlib will be used. This will install the rest of the supported library dll’s.

The two packages, “Kvaser Drivers for Windows” and “Kvaser CANlib SDK”, contains both 32 and 64 bit versions of
the included dll’s.

2 The kvaMemoLib0600.dl, which supports older devices, is not supported under Linux.
! The kvlclib.dll depends on dlI files from matlab wich are installed alongside kvlclib.dIl.

4 Chapter 1. Contents

https://pypi.org/project/canlib/
https://www.kvaser.com/downloads-kvaser/
https://www.kvaser.com/downloads-kvaser/
https://www.kvaser.com/downloads-kvaser/?utm_source=software&utm_ean=7330130980013&utm_status=latest
https://www.kvaser.com/downloads-kvaser/?utm_source=software&utm_ean=7330130980150&utm_status=latest

canlib, Release 1.22.565

Linux

On Linux, first install the 1ibcanlib. so by downloading and installing “Kvaser LINUX Driver and SDK” which can
be found on the Kvaser Download page (linuxcan.tar.gz).

If more than just CANIib will be used, the rest of the supported libraries will be available by downloading and installing
“Linux SDK library” (kvlibsdk.tar.gz).

1.2.4 Usage

Example of using canlib to list some information about connected Kvaser devices:

from canlib import canlib

num_channels = canlib.getNumberOfChannels()
print(f"Found {num_channels} channels")
for ch in range(num_channels):
chd = canlib.ChannelData(ch)
print(f"{ch}. {chd.channel_name! ({chd.card_upc_no} / {chd.card_serial_no})")

Which may result in:

Found 4 channels

0. Kvaser Memorator Pro 2xHS v2 (channel 0) (73-30130-00819-9 / 12330)
1. Kvaser Memorator Pro 2xHS v2 (channel 1) (73-30130-00819-9 / 12330)
2. Kvaser Virtual CAN Driver (channel 0) (00-00000-00000-0 / 0)

3. Kvaser Virtual CAN Driver (channel 1) (00-00000-00000-0 / 0)

1.2.5 Support

You are invited to visit the Kvaser web pages at https://www.kvaser.com/support/. If you don’t find what you are
looking for, you can obtain support on a time-available basis by sending an e-mail to support@kvaser.com.

Bug reports, contributions, suggestions for improvements, and similar things are much appreciated and can be sent by
e-mail to support@kvaser.com.

1.2.6 What’s new

A complete set of release notes are available in the package documentation included in the zip file available at the
Kvaser Download page.

1.2.7 Links

» Kvaser CANIlib SDK Page: https://www.kvaser.com/developer/canlib-sdk/

e Description of CANIlib SDK library contents: https://www.kvaser.com/developer-blog/
get-hardware-kvaser-sdk-libraries/

1.2. Supported Libraries and Installation 5

https://www.kvaser.com/downloads-kvaser/
https://www.kvaser.com/downloads-kvaser/?utm_source=software&utm_ean=7330130980754&utm_status=latest
https://www.kvaser.com/downloads-kvaser/?utm_source=software&utm_ean=7330130981966&utm_status=latest
https://www.kvaser.com/support/
mailto:support@kvaser.com
mailto:support@kvaser.com
https://www.kvaser.com/downloads-kvaser/
https://www.kvaser.com/developer/canlib-sdk/
https://www.kvaser.com/developer-blog/get-hardware-kvaser-sdk-libraries/
https://www.kvaser.com/developer-blog/get-hardware-kvaser-sdk-libraries/

canlib, Release 1.22.565

1.2.8 License

This project is licensed under the terms of the MIT license.

1.2.9 Wrapped libraries

* canlib

* kvadblib

e kvamemolibxml
e kviclib

e kvmlib

e kvrlib

e [inlib

1.3 Tutorials

1.3.1 canlib

Contents

e canlib
— List connected devices

— Send and receive single frame

— Send and receive CAN FD frame

The following sections contain sample code for inspiration on how to use Kvaser Python canlib.

List connected devices

"""list_devices.py -- List all connected CAN devices

This code probes each connected device and prints information about them.

e

import canlib

for dev in canlib.connected_devices():
print(dev.probe_info())

Sample Output:

6 Chapter 1. Contents

canlib, Release 1.22.565

CANlib Channel:
7

: Kvaser Memorator Pro 2xHS v2 (channel 0)
: kcany7a

: 73-30130-00819-9

1 3.24.0.722

Card Number
Device
Driver Name
EAN
Firmware

Serial Number :
CANlib Channel:
: 8

: Kvaser Memorator Pro 5xHS (channel 0)
: kcany8a

: 73-30130-00832-8

: 3.23.0.646

Card Number
Device
Driver Name
EAN
Firmware

Serial Number :
CANlib Channel:
)

: Kvaser Virtual CAN Driver (channel 0)
: kcanv@a

: 00-00000-00000-0

: 0.0.0.0

Card Number
Device
Driver Name
EAN
Firmware

Serial Number :

0

12330
2

10028
7

0

Send and receive single frame

e

Here is some basic code to send and receive a single frame.

e

send_and_receive_can.py

from canlib import canlib, Frame
from canlib.canlib import ChannelData

def setUpChannel (channel=0,

openFlags=canlib.Open.ACCEPT_VIRTUAL,
outputControl=canlib.Driver.NORMAL):

ch = canlib.openChannel (channel, openFlags)
print("Using channel: %s, EAN: %s" % (ChannelData(channel).channel_name,
ChannelData(channel) .card_upc_no))

ch.setBusOutputControl (outputControl)

Specifying a bus speed of 250 kbit/s. See documentation

for more informationon how to set bus parameters.
params = canlib.busparams.BusParamsTq/(

tg=8,

phasel=2,
phase2=2,

sjw=1,

prescaler=40,

prop=3

(continues on next page)

1.3. Tutorials

canlib, Release 1.22.565

(continued from previous page)

)

ch.set_bus_params_tq(params)
ch.busOn()
return ch

def tearDownChannel(ch):
ch.busOff()
ch.close()

print("canlib version:", canlib.dllversion())
ch® = setUpChannel (channel=0)
chl = setUpChannel (channel=1)
frame = Frame(
id_=100,
data=[1, 2, 3, 4],
flags=canlib.MessageFlag.EXT

)
chl.write(frame)
while True:
try:
frame = ch®.read()
print (frame)
break
except canlib.canNoMsg:
pass
except canlib.canError as ex:
print(ex)
tearDownChannel (ch0)
tearDownChannel (chl)

Send and receive CAN FD frame

e

send_and_receive_canfd.py

Here are some minimal code to send and receive a CAN FD frame.

e

from canlib import canlib, Frame

Specifying an arbitration phase bus speed of 1 Mbit/s,
and a data phase bus speed of 2 Mbit/s. See documentation
for more information on how to set bus parameters.
params_arbitration = canlib.busparams.BusParamsTq(

tq=40,

phasel=8,

phase2=8,

sjw=8,

(continues on next page)

8 Chapter 1. Contents

canlib, Release 1.22.565

(continued from previous page)

prescaler=2,
prop=23
)
params_data = canlib.busparams.BusParamsTq(
tq=20,
phasel=8,
phase2=4,
sjw=4,
prescaler=2,
prop=7
)

open channel as CAN FD using the flag

ch® = canlib.openChannel (channel=0, flags=canlib.Open.CAN_FD)
ch0.setBusOutputControl (drivertype=canlib.Driver.NORMAL)
ch0.set_bus_params_tq(params_arbitration, params_data)
ch0®.busOn()

chl = canlib.openChannel (channel=1, flags=canlib.Open.CAN_FD)
chl.setBusOutputControl (drivertype=canlib.Driver.NORMAL)
chl.set_bus_params_tq(params_arbitration, params_data)
chl.busOn()

set FDF flag to send using CAN FD
set BRS flag to send using higher bit rate in the data phase
frame = Frame(

id_=100,

data=range(32),

flags=canlib.MessageFlag.FDF | canlib.MessageFlag.BRS
)
print('Sending', frame)
ch®.write(frame)

frame = chl.read(timeout=1000)
print('Received', frame)

ch®.bus0ff()
chl.busOff()

1.3.2 kvrlib

Contents

* kvrlib

— Connect to your remote device

The following sections contain sample code for inspiration on how to use Kvaser Python kvrlib.

1.3. Tutorials 9

canlib, Release 1.22.565

Connect to your remote device

i

connect_to_remote_device.py

Use the discovery functions to scan and connect to a remote device. Our remote
device has serial number 10545 and is already connected to the same network as our
computer.

i

from canlib import kvrlib
SERIAL_NO = 10545

print("kvrlib version: %s" % kvrlib.getVersion())
print("Connecting to device with serial number %s" % SERIAL_NO)

addressList = kvrlib.kvrDiscovery.getDefaultAddresses(kvrlib.kvrAddressTypeFlag_
—~BROADCAST)
print("Looking for device using addresses: %s" % addressList)
discovery = kvrlib.kvrDiscovery()
discovery.setAddresses(addressList)
deviceInfos = discovery.getResults()
print("Scanning result:\n%s" % deviceInfos)
Connect to device with correct SERIAL_NO
for deviceInfo in deviceInfos:
if deviceInfo.ser_no == SERIAL_NO:
devicelInfo.connect()
print ('\nConnecting to the following device:')

print (deviceInfo)
discovery.storeDevices(deviceInfos)
break

discovery.close()

This results in the following:

kvrlib version: 2070

Connecting to device with serial number 10545

Looking for device using addresses: 10.0.255.255:0 (IPV4_PORT)
Scanning result:

[

name/hostname : "MiMi-06348-000710" / "kv-06348-000710"
ean/serial 1 73301-30006348 / 710
fw : 2.4.231

addr/cli/AP : 10.0.3.138 (IPV4) / 10.0.3.84 (IPV4) / - (UNKNOWN)
availability : Availability.STORED|FOUND_BY_SCAN

usage/access : DeviceUsage.FREE / Accessibility.PUBLIC
pass/enc.key : yes / yes,

name/hostname : "TestClientl1-2-DUT-01" / "swtdut®1"
ean/serial : 73301-30006713 / 10545
fw 1 3.4.822

addr/cli/AP : 10.0.3.54 (IPV4) / 10.0.3.98 (IPV4) / - (UNKNOWN)
availability : Availability.STORED|FOUND_BY_SCAN

(continues on next page)

10 Chapter 1. Contents

canlib, Release 1.22.565

(continued from previous page)

usage/access : DeviceUsage.REMOTE / Accessibility.PUBLIC
pass/enc.key : yes / yes]

Connecting to the following device:

name/hostname : "TestClientl1-2-DUT-01" / "swtdut®1"
ean/serial : 73301-30006713 / 10545
fw : 3.4.822

addr/cli/AP : 10.0.3.54 (IPV4) / 10.0.3.98 (IPV4) / - (UNKNOWN)
availability : Availability.STORED|FOUND_BY_SCAN

usage/access : DeviceUsage.REMOTE / Accessibility.PUBLIC
pass/enc.key : yes / yes

1.3.3 linlib

The following sections contain sample code for inspiration on how to use Kvaser Python linlib.

Basic master slave usage

"""basic_master_slave_lin.py

This code opens up one master and one slave, sets bitrate and then the slave
sends a wakeup message to the master.

i

import the 1inlib wrapper from the canlib package
from canlib import linlib

print information about device firmware version
print(linlib.getChannelData(channel_number=0,
item=1inlib.ChannelData.CARD_FIRMWARE_REV))

open the first channel as a Master
master = linlib.openChannel (channel_number=0,
channel_type=1inlib.ChannelType.MASTER)

open the next channel as a Slave
slave = linlib.openChannel (channel_number=1,
channel_type=1inlib.ChannelType.SLAVE)

setup bitrate
master.setBitrate(10000)
slave.setBitrate(10000)

activate the LIN interface by going bus on
master.busOn()
slave.busOn()

(continues on next page)

1.3. Tutorials 11

canlib, Release 1.22.565

(continued from previous page)

send a wakeup frame from the slave
slave.writeWakeup()

read the frame when it arrives at the master
frame = master.read(timeout=100)
print (frame)

go bus off
master.busOff()
slave.busOff()

Sending message from master

i

send_lin_message.py

This example uses two shorthand helper functions to open the channels. We then
send some messages from the master and see that they arrive.

i

from canlib import linlib, Frame

open the first channel as Master, using helper function
master = linlib.openMaster(0)

open the next channel as a Slave, using helper function
slave = linlib.openSlave(1)

go bus on
master.busOn()
slave.busOn()

send some messages from master
NUM_MESSAGES = 2
for i in range (NUM_MESSAGES):
master.writeMessage(Frame(id_=i, data=[1, 2, 3, 4, 5, 6, 7, 8]))
master.writeSync(100)

print the received messages at the slave
for i in range (NUM_MESSAGES):

frame = slave.read(timeout=100)

print (frame)

the master should also have recorded the messages
for i in range (NUM_MESSAGES):

frame = master.read(timeout=100)

print (frame)

go bus off
master.busOff()
slave.busOff()

12 Chapter 1. Contents

canlib, Release 1.22.565

Requesting LIN 2.0 message

i

request_lin_message.py

Here we look at using LIN 2.0 and setting up a message, using the ‘Frame"

object, on the slave which is then requested by the master.

o

from canlib import linlib, Frame
ID = 0x17
DATA = bytearray([1l, 2, 3, 4])

open the first channel as Master, using helper function
master = linlib.openMaster(®, bps=20000)

open the next channel as a Slave, using helper function
slave = linlib.openSlave(l)

master.busOn()
slave.busOn()

configure channels to use LIN 2.0

slave.setupLIN(flags=1inlib.Setup.ENHANCED_CHECKSUM | linlib.Setup.VARIABLE_DLC)
master.setupLIN(flags=1inlib.Setup.ENHANCED_CHECKSUM | linlib.Setup.VARIABLE_DLC)

setup a message in the slave
slave.updateMessage(Frame(id_=ID, data=DATA))

request the message and print it
master.requestMessage(ID)

frame = master.read(timeout=100)
print (frame)

clear the message
slave.clearMessage(0x17)

we should now get an empty message
master.requestMessage(0x17)

frame = master.read(timeout=100)
print (frame)

go bus off
master.busOff()
slave.busOff()

1.3. Tutorials

13

canlib, Release 1.22.565

1.4 Using canlib (CANIib)

The canlib module wraps the CAN bus API (CANIib), which is used to interact with Kvaser CAN devices connected
to your computer and the CAN bus. At its core you have functions to set bus parameters (e.g. bit rate), go bus on/off
and read/write CAN messages. You can also use CANIib to download and start t programs on supported devices.

1.4.1 Introduction
Hello, CAN!

Let’s start with a simple example:

The CANlib library is initialized when the canlib module is imported.
from canlib import canlib, Frame

Open a channel to a CAN circuit. In this case we open channel 0 which
should be the first channel on the CAN interface. EXCLUSIVE means we don't
want to share this channel with any other currently executing program.
We also set the CAN bus bit rate to 250 kBit/s, using a set of predefined
bus parameters.
ch = canlib.openChannel (
channel=0,
flags=canlib.Open.EXCLUSIVE,
bitrate=canlib.Bitrate.BITRATE_250K,
)

Set the CAN bus driver type to NORMAL.
ch.setBusOutputControl (canlib.Driver.NORMAL)

Activate the CAN chip.
ch.busOn()

Transmit a message with (11-bit) CAN id = 123, length 6 and contents
(decimal) 72, 69, 76, 76, 79, 33.

frame = Frame(id_=123, data=b'HELLO!', dlc=6)

ch.write(frame)

Wait until the message is sent or at most 500 ms.
ch.writeSync(timeout=500)

Inactivate the CAN chip.
ch.busOff()

Close the channel.
ch.close()

14 Chapter 1. Contents

canlib, Release 1.22.565

canlib Core API Calls
The following calls can be considered the “core” of canlib as they are essential for almost any program that uses the
CAN bus:

e openChannel and close

* busOn and busOff

e read

e write and writeSync

1.4.2 Initialization

Library Initialization

The underlaying CANIib library is initialized when the module canlib.canlib is imported. This will initialize the
CANIib library and enumerate all currently available CAN channels.

Library Deinitialization and Cleanup

Strictly speaking it is not necessary to clean up anything before terminating the application. If the application quits
unexpectedly, the device driver will ensure the CAN controller is deactivated and the driver will also ensure the firmware
(if any) is left in a consistent state.

To reinitialize the library in an orderly fashion you may want to call canlib. Channel . writeSync with a short timeout
for each open handle before closing them with canlib. Channel. close, to ensure the transmit queues are empty. You
can then start afresh by calling canlib.reinitializeLibrary.

Note: When calling canlib.reinitializeLibrary, all previously opened CAN handles (canlib. Channel) will
be closed and invalidated.

Manually Enumerating CAN channels

The function canlib. enumerate_hardware scans all currently connected devices and creates a completely new set of
CANIib channel numbers, while still keeping all currently opened channel handles valid and usable. This can be viewed
upon as a replacement for calling canlib.reinitializeLibrary which do invalidate all open channel handles.

One thing to keep in mind when using this functionality is to never track devices based on their CANIib channel
number, since this number may change anytime enumerate_hardware is called. To retrieve information about a
specific channel use Channel . channel_data to get a safe ChannelData, instead of relying on an old ChannelData
object created from a channel number.

Note: On Linux, no re-enumeration is needed since enumeration takes place when a device is plugged in or unplugged.

1.4. Using canlib (CANIib) 15

canlib, Release 1.22.565

1.4.3 Devices and Channels

Identifying Devices and Channels

Once we have imported canlib.canlib, which enumerates the connected Kvaser CAN devices, we can call
getNumberOfChannels to get the number of enumerated channels in our system.

This code snippet reads the number of enumerated channels found in the PC:

>>> from canlib import canlib
>>> canlib.getNumberOfChannels()
8

Channel Information

Use ChannelData to obtain data for a specific channel, for example, the hardware type of the CAN interface.

We can use ChannelData for the CANIlib channel numbers 0, 1, 2,..., n-1 (where n is the number returned by
getNumberOfChannels) to get information about that specific channel.

To uniquely identify a device, we need to look at both the ChannelData.card_upc_no and ChannelData.
card_serial_no.

The following code snippet loops through all known channels and prints the type of the CAN card they’re on.

>>> from canlib import canlib

. num_channels = canlib.getNumberOfChannels()
. print("Found channels" % num_channels)
. for channel in range(0, num_channels):
chdata = canlib.ChannelData(channel)
print("%d. (s / %s)" % (
channel,
chdata.channel_name,
chdata.card_upc_no,
chdata.card_serial_no)
.)
Found 8 channels
Kvaser Leaf Light HS (channel 0) (73-30130-00241-8 / 1346)
Kvaser Memorator Pro 2xHS v2 (channel 0) (73-30130-00819-9 / 11573)
Kvaser Memorator Pro 2xHS v2 (channel 1) (73-30130-00819-9 / 11573)
Kvaser Leaf Pro HS v2 (channel 0) (73-30130-00843-4 / 10012)
Kvaser Hybrid 2xCAN/LIN (channel 0) (73-30130-00965-3 / 1100)
Kvaser Hybrid 2xCAN/LIN (channel 1) (73-30130-00965-3 / 1100)
Kvaser Virtual CAN Driver (channel 0) (00-00000-00000-0 / 0)
Kvaser Virtual CAN Driver (channel 1) (00-00000-00000-0 / 0)

NOoO VA WN R

16 Chapter 1. Contents

canlib, Release 1.22.565

Customized Channel Name

It is possible to set the customized name returned by ChannelData.card_serial_no on the device using Kvaser
Device Guide by right clicking on the device channel and selecting “Edit Channel Name”

Kvaser Device Guide = O X
File View Tools Help
v g% Hardware Device Mame Canlib Channel Serial Mumber
v -B; Kvaser DIN Rail SE4005 (Remote) T T —
H Channel 1 (Red Channel) LLp Rvaser 2l e A
% Channelz B, kuaser DIN Rail SE400¢ Locate Hardware (Flash LEDs)
.88 Channel 3 P, kvaser DIN Rail SE400% Refrech -
53 Channel 4 B, Kvaser DIN Rail SE400¢

i Configure Memorator
- g Kvaser Virtual CAN Driver 9 !

Configure Remote Settings

Pair via Wi-Fi
Edit Channel Mame ~
Item
General Information Expand All Ctrl+E]
Device Name View Synchronized Hardware Ctrl+5
Manufacturer Kvaser
Device EAN 73-30130-01059-8
Serial Mumber 227
Firmware Yersion 3.14.851
Channel Name Red Channel
Bus Parameters ~
Bus status Bus Off
Detailed Information LI

Press F3 to refresh, ESCto exit. Press F1 for Help,

Fig. 1: Setting the device’s Channel Name from inside Kvaser Device Guide

Now we can read the customized name:

>>> from canlib import canlib

>>> chdata = canlib.ChannelData(channel_number=0)
>>> chdata.custom_name

'Red Channel'

1.4. Using canlib (CANIib) 17

canlib, Release 1.22.565

Virtual Channels
CANIib supports virtual channels that you can use for development, test or demonstration purposes when you don’t
have any hardware installed.

To open a virtual channel, call openChannel with the appropriate channel number, and specify ACCEPT_VIRTUAL in
the flags argument to canOpenChannel().

1.4.4 Open Channel

Once we have imported canlib.canlib to enumerate the connected Kvaser CAN devices, the next call is likely to
be a call to openChannel, which returns a Channel object for the specific CAN circuit. This object is then used for
subsequent calls to the library. The openChannel function’s first argument is the number of the desired channel, the
second argument is modifier flags Open.

openChannel may raise several different exceptions, one of which is CanNotFound. This means that the channel
specified in the first parameter was not found, or that the flags passed to openChannel is not applicable to the specified
channel.

Open as CAN

No special Open modifier flag is needed in the flags argument to openChannel when opening a channel in CAN mode.

>>> from canlib import canlib
>>> canlib.openChannel (channel=0)
<canlib.canlib.channel.Channel object at 0x0000015B787EDA90>

Open as CAN FD

To open a channel in CAN FD mode, either CAN_FD or CAN_FD_NONISO needs to be given in the flags argument to
openChannel.

This example opens channel 0 in CAN FD mode:

>>> from canlib import canlib

>>> ch = canlib.openChannel (
channel=0,
flags=canlib.Open.CAN_FD,

ve)

>>> ch.close()

Close Channel

Closing a channel is done using close. If no other handles are referencing the same CANIib channel, the channel is
taken off bus.

The CAN channel can also be opened and closed using a context manager:

>>> from canlib import canlib
>>> with canlib.openChannel (channel=1) as ch:

18 Chapter 1. Contents

canlib, Release 1.22.565

Check Channel Capabilities

Channel specific information and capabilities are made available by reading attributes of an instance of type
ChannelData.

The device clock frequency can be obtained via frequency Q) :

>>> from canlib import canlib

>>> chd = canlib.ChannelData(channel_number=0)
>>> clock_info = chd.clock_info

>>> clock_info. frequency()

80000000

The capabilities of a channel can be obtained by reading attribute channel_cap and channel_cap_ex:

>>> from canlib import canlib

>>> chd = canlib.ChannelData(channel_number=0)

>>> chd.channel_cap

ChannelCap.IO_API|SCRIPT|LOGGER|SINGLE_SHOT|SILENT_MODE |CAN_FD_NONISO|CAN_FD|
TXACKNOWLEDGE | TXREQUEST | GENERATE_ERROR | ERROR_COUNTERS | BUS_STATISTICS | EXTENDED_CAN
>>> chd.channel_cap_ex[0]

ChannelCapEx.BUSPARAMS_TQ

A bitwise AND operator can be used to see if a channel has a specific capability.

>>> if (chd.channel_cap & canlib.ChannelCap.CAN_FD):
>>> print("Channel has support for CAN FD!")
Channel has support for CAN FD!

The above printouts are just an example, and will differ for different devices and installed firmware.

Set CAN Bitrate

After opening the channel in classic CAN mode (see Open as CAN), use set_bus_params_tq to specify the bit timing
parameters on the CAN bus. Bit timing parameters are packaged in an instance of type BusParamsTq. Note that the
synchronization segment is excluded as it is always one time quantum long.

Example: Set the bus speed to 500 kbit/s on a CAN device with an 80 MHz oscillator:

>>> from canlib import canlib

>>> ch = canlib.openChannel (channel=0)

>>> params = canlib.busparams.BusParamsTq(
tq=8,

phasel=2,

phase2=2,

sjw=1,

prescaler=20,

.- prop=3

.)

>>> ch.set_bus_params_tq(params)

In the example a prescaler of 20 is used, resulting in each bit comprising of 160 time quanta (8 * 20). The nominal bus
speed is given by 80 * 1076 / (20 * 8) = 500 * 103.

If uncertain how to set a specific bus speed, one can use calc_busparamstq, which returns a BusParamsTq object:

1.4. Using canlib (CANIib) 19

canlib, Release 1.22.565

>>> calc_busparamstq(
. target_bitrate=470_000,
. target_sample_point=82,
. target_sync_jump_width=15.3,
. clk_freg=clock_info. frequency(),
. target_prop_tqg=50,
... prescaler=2)
BusParamsTq(tq=85, prop=25, phasel=44, phase2=15, sjw=13, prescaler=2)

For users that are not interested in specifying individual bit timing parameters, CANIib also provides a set of default
parameter settings for the most common bus speeds through the Bitrate class. The predefined bitrate constants may
be set directly in the call to openChannel:

>>> ch = canlib.openChannel (channel=0, bitrate=canlib.Bitrate.BITRATE_500K)

Table 1: Bit timing parameters for some of the most common bus speeds
on a CAN device with an 80 MHz oscillator!

tq phase1 phase?2 sjw prop prescaler | Sample Bitrate
point
BITRATE_10K6 4 4 1 7 500 75% 10 kbit/s
BITRATE_50K6 4 4 1 7 100 75% 50 kbit/s
BITRATE_§2K6 4 4 1 7 80 75% 62 kbit/s
BITRATE_83% 2 2 2 3 120 75% 83 kbit/s
BITRATE_100K 4 4 1 7 50 75% 100 kbit/s
BITRATE_12bK 4 4 1 7 40 75% 125 kbit/s
BITRATE_258K 2 2 1 3 40 75% 250 kbit/s
BITRATE_508K 2 2 1 3 20 75% 500 kbit/s
BITRATE_1M8 2 2 1 3 10 75% 1 Mbit/s

If uncertain how to calculate bit timing parameters, appropriate values can be acquired using the Bit Timing Calculator.
Note that in classic CAN mode, only the nominal bus parameters are of concern when using the Bit Timing Calculator.

Set CAN FD Bitrate

After opening a channel in CAN FD mode (see Open as CAN FD), bit timing parameters for both the arbitration
and data phases need to be set. This is done by a call to set_bus_params_tq, with two separate instances of type
BusParamsTq as arguments.

Example: Set the arbitration phase bitrate to 500 kbit/s and the data phase bitrate to 1000 kbit/s, with sampling points
at 80%.

>>> from canlib import canlib
>>> ch = canlib.openChannel (channel=0, flags=canlib.Open.CAN_FD)
>>> params_arbitration = canlib.busparams.BusParamsTq/(

tq=80,

phasel=16,

phase2=16,

sjw=16,

prescaler=2,

prop=47

(continues on next page)

!'See Check Channel Capabilities for information on clock frequency.

20 Chapter 1. Contents

https://www.kvaser.com/support/calculators/can-fd-bit-timing-calculator/

canlib, Release 1.22.565

(continued from previous page)

-)
>>> params_data = canlib.busparams.BusParamsTq/(
tq=40,
phasel=31,
phase2=8,
sjw=8,
prescaler=2,

. prop=0
=)

>>> ch.set_bus_params_tq(params_arbitration, params_data)

For users that are not interested in specifying individual bit timing parameters, CANIib also provides a set of default
parameter settings for the most common bus speeds through the BitrateFD class. The predefined bitrates may be set
directly in the call to openChannel:

>>> ch = canlib.openChannel(

channel=0,

flags=canlib.Open.CAN_FD,
bitrate=canlib.BitrateFD.BITRATE_500K_80P,

.. data_bitrate=canlib.BitrateFD.BITRATE_1M_8OP,
<)

For CAN FD bus speeds other than the predefined BitrateFD, bit timing parameters have to be specified manually.

Table 2: Available predefined bitrate constants with corresponding bit

timing parameters for a CAN FD device with an 80 MHz oscillator™e¢ 20 !
tq phase1 phase2 sjw prop prescaler | Sample Bitrate
point
BITRATE_5040_80P 8 8 8 23 4 80% 500 kbit/s
BITRATE_1M4BOP 8 8 8 23 2 80% 1 Mbit/s
BITRATE_2M2@0OP 8 4 4 7 2 80% 2 Mbit/s
BITRATE_2M2G0OP 8 8 4 3 2 60% 2 Mbit/s
BITRATE_4M1@OP 7 2 2 0 2 80% 4 Mbit/s
BITRATE_8M1BOP 7 2 1 0 1 80% 8 Mbit/s
BITRATE_8M1GOP 6 3 1 0 1 70% 8 Mbit/s
BITRATE_8M560P 2 2 1 0 2 60% 8 Mbit/s

If uncertain how to calculate bit timing parameters, appropriate values can be acquired using the Bit Timing Calculator.

CAN Driver Modes

Use setBusOutputControl to set the bus driver mode. This is usually set to NORMAL to obtain the standard push-pull
type of driver. Some controllers also support SILENT which makes the controller receive only, not transmit anything,
not even ACK bits. This might be handy for e.g. when listening to a CAN bus without interfering.

>>> from canlib import canlib
>>> with canlib.openChannel (channel=1) as ch:
ch.setBusOutputControl (canlib.Driver.SILENT)

NORMAL is set by default.

1.4. Using canlib (CANIib) 21

https://www.kvaser.com/support/calculators/can-fd-bit-timing-calculator/

canlib, Release 1.22.565

Note: Using setBusOutputControl to set the bus driver mode to STLENT on a device that do not support Silent
mode will not result in any error messages or warnings, the CAN Driver Mode will just remain in NORMAL mode.

A device that supports Silent mode returns SILENT_MODE when asked using canlib.ChannelData.channel_cap.

Legacy Functions

The following functions are still supported by canlib.

Set CAN Bitrate

setBusParams can be used to set the CAN bus parameters, including bitrate, the position of the sampling point etc,
they are also described in most CAN controller data sheets. Depending on device and installed firmware, the requested
parameters may be subject to scaling in order to accommodate device specific restrictions. As such, reading back bus
parameters using getBusParamsFd can return bus parameter settings different than the ones supplied. Note however,
that a successful call to setBusParamsFd will always result in the requested bit rate being set on the bus, along with
bus parameters that for all intents and purposes are equivalent to the ones requested.

Set the speed to 125 kbit/s, each bit comprising 8 (= 1 + 4 + 3) quanta, the sampling point occurs at 5/8 of a bit; STW
= 1; one sampling point:

>>> ch.setBusParams(freq=125000, tsegl=4, tseg2=3, sjw=1, noSamp=1)

Set the speed to 111111 kbit/s, the sampling point to 75%, the SJTW to 2 and the number of samples to 1:

>>> ch.setBusParams(freq=111111, tsegl=5, tseg2=2, sjw=2, noSamp=1)

For full bit timing control, use set_bus_params_tq instead.

Set CAN FD Bitrate

After a channel has been opened in CAN FD mode, setBusParams, and setBusParamsFd can be used to set the
arbitration and data phase bitrates respectively. Depending on device and installed firmware, the requested parameters
may be subject to scaling in order to accommodate device specific restrictions. As such, reading back bus parameters
using getBusParamsFd can return bus parameter settings different than the ones supplied. Note however, that a
successful call to setBusParamsFd will always result in the requested bit rate being set on the bus, along with bus
parameters that for all intents and purposes are equivalent to the ones requested.

Set the nominal bitrate to 500 kbit/s and the data phase bitrate to 1000 kbit/s, with sampling points at 80%.

>>> ch.setBusParams(freq=500000, tsegl=63, tseg2=16, sjw=16, noSamp=1);
>>> ch.setBusParamsFd(freq_brs=1000000, tsegl_brs=31, tseg2_brs=8, sjw_brs=8);

For full bit timing control, use set_bus_params_tq instead.

22 Chapter 1. Contents

canlib, Release 1.22.565

1.4.5 CAN Frames

CAN Data Frames

The CAN Data Frame, represented by the Frame object, is the most common message type, which consists of the
following major parts (a few details are omitted for the sake of brevity):

CAN identifier: canlib.Frame.id
The CAN identifier, or Arbitration Field, determines the priority of the message when two or more nodes are
contending for the bus. The CAN identifier contains for:

¢ CAN 2.0A, an 11-bit Identifier and one bit, the RTR bit, which is dominant for data frames.

¢ CAN 2.0B, a 29-bit Identifier, with the EXT bit set, (which also contains two recessive bits: SRR and IDE)
and the RTR bit.

Data field: canlib.Frame.data
The Data field contains zero to eight bytes of data.

Data Length Code: canlib.Frame.dlc
The DLC field specifies the number of data bytes in the Data field.

CRC Field:
The CRC Field contains a 15-bit checksum calculated on most parts of the message. This checksum is used for
error detection.

Acknowledgement Slot:
Any CAN controller that has been able to correctly receive the message sends an Acknowledgement bit at the end
of each message. The transmitter checks for the presence of the Acknowledge bit and retransmits the message if
no acknowledge was detected.

Note: It is worth noting that the presence of an Acknowledgement Bit on the bus does not mean that any of the
intended addressees has received the message. The only thing we know is that one or more nodes on the bus has
received it correctly. The Identifier in the Arbitration Field is not, despite of its name, necessarily identifying the
contents of the message.

The canlib.Frame. flags attribute consists of message information flags, according to MessageFlag.

CAN FD Data Frames

A standard CAN network is limited to 1 MBit/s, with a maximum payload of 8 bytes per frame. CAN FD increases the
effective data-rate by allowing longer data fields - up to 64 bytes per frame - without changing the CAN physical layer.
CAN FD also retains normal CAN bus arbitration, increasing the bit-rate by switching to a shorter bit time only at the
end of the arbitration process and returning to a longer bit time at the CRC Delimiter, before the receivers send their
acknowledge bits. A realistic bandwidth gain of 3 to 8 times what’s possible in CAN will particularly benefit flashing
applications.

1.4. Using canlib (CANIib) 23

canlib, Release 1.22.565

Error Frames

Nearly all hardware platforms support detection of Error Frames. If an Error Frame arrives, the flag ERROR_FRANE is
set in the Frame. The identifier is garbage if an Error Frame is received, but for LAPcan it happens to be 2048 plus the
error code from the SJA1000.

Many platforms support transmission of Error Frames as well. To send Error Frames, set the ERROR_FRAVME flag in the
Frame before sending using write.

Simply put, the Error Frame is a special message that violates the framing rules of a CAN message. It is transmitted
when a node detects a fault and will cause all other nodes to detect a fault - so they will send Error Frames, too. The
transmitter will then automatically try to retransmit the message. There is an elaborate scheme of error counters that
ensures that a node can’t destroy the bus traffic by repeatedly transmitting error frames.

The Error Frame consists of an Error Flag, which is 6 bits of the same value (thus violating the bit-stuffing rule) and
an Error Delimiter, which is 8 recessive bits. The Error Delimiter provides some space in which the other nodes on the
bus can send their Error Flags when they detect the first Error Flag.

Remote Requests
You can send remote requests by passing the RTR flag to write. Received remote frames are reported by read et.al.
using the same flag.
The Remote Frame is just like the Data Frame, with two important differences:
* It is explicitly marked as a Remote Frame (the RTR bit in the Arbitration Field is recessive)
* There is no Data Field.

The intended purpose of the Remote Frame is to solicit the transmission of the corresponding Data Frame. If, say, node
A transmits a Remote Frame with the Arbitration Field set to 234, then node B, if properly initialized, might respond
with a Data Frame with the Arbitration Field also set to 234.

Remote Frames can be used to implement a type of request-response type of bus traffic management. In practice,
however, the Remote Frame is little used. It is also worth noting that the CAN standard does not prescribe the behaviour
outlined here. Most CAN controllers can be programmed either to automatically respond to a Remote Frame, or to
notify the local CPU instead.

There’s one catch with the Remote Frame: the Data Length Code must be set to the length of the expected response
message even though no data is sent. Otherwise the arbitration will not work.

Sometimes it is claimed that the node responding to the Remote Frame is starting its transmission as soon as the
identifier is recognized, thereby “filling up” the empty Remote Frame. This is not the case.

Overload Frames

Overload Frames aren’t used nowadays. Certain old CAN controllers (Intel 82526) used them to delay frame processing
in certain cases.

24 Chapter 1. Contents

canlib, Release 1.22.565

Other frame features of interest

There are some other frame features of interest:

* You can send wakeup frames (used for Single-Wire CAN) if your hardware supports it, for example, a LAPcan
plus a DRVcan S. Just set the FAKEUP flag.

* For “low-speed CAN” (1053/1054 type transceivers), the NERR flag is set if a frame is received in “fault-tolerant”
mode.

1.4.6 Send and Receive

Bus On / Bus Off

When the CAN controller is on bus, it is receiving messages and is sending acknowledge bits in response to all correctly
received messages. A controller that is off bus is not taking part in the bus communication at all.

When you have a Channel object, use busOn to go on bus and busOff to go off bus.

If you have multiple Channel objects to the same controller, the controller will go off bus when the last of the Channel
objects go off bus (i.e. all Channel objects must be off bus for the controller to be off bus). You can use readStatus
and watch the flag BUS_OFF to see if the controller has gone off bus.

You can set a channel to silent mode by using the SILENT mode if you want it to be on-bus without interfering with the
traffic in any way, see CAN Driver Modes.

This example opens a channel, takes it on-bus, then takes it off-bus and closes it:

>>> from canlib import canlib
. with canlib.openChannel (channel=1) as ch:
ch.busOn()

ch.busOff()

Reading Messages

Incoming messages are placed in a queue in the driver. In most cases the hardware does message buffering as well.
You can read the first message in the queue by calling read, which will raise the exception CanNoMsg if there was no
message available.

The flags attribute of the Frame returned by read contains a combination of the MessageFlag flags, including FDF,
BRS, and EST if the CAN FD protocol is enabled, and error flags such as OVERRUN which provides you with more
information about the message; for example, a frame with a 29-bit identifier will have the EXT bit set, and a remote
frame will have the RTR bit set. Note that the flag argument is a combination of the MessageFlag, so more than one
flag might be set.

See CAN Frames for more information.

Sometimes it is desirable to have a peek into the more remote parts of the queue. Is there, for example, any message
waiting that has a certain identifier?

* If you want to read just a message with a specified identifier, and throw all others away, you can
call readSpecificSkip. This routine will return the first message with the specified identifier,
discarding any other message in front of the desired one.

 If you want to wait until a message arrives (or a timeout occurs) and then read it, call read with a
timeout.

1.4. Using canlib (CANIib) 25

canlib, Release 1.22.565

* If you want to wait until there is at least one message in the queue with a certain identifier, but you
don’t want to read it, call readSyncSpecific.

The following code fragment reads the next available CAN message, (using default bitrate 500 kbit/s):

>>> from canlib import canlib
. with canlib.openChannel (channel=0) as ch:
ch.busOn()
frame = ch.read(timeout=1000)
ch.busO0ff()
>>> frame
Frame(id=709, data=bytearray(b'\xb5R'), dlc=2, flags=<MessageFlag.STD: 2>, timestamp=3)

Acceptance Filters
You can set filters to reduce the number of received messages. CANIib supports setting of the hardware filters on the
CAN interface board. This is done with the canAccept function.

You set an acceptance code and an acceptance mask which together determine which CAN identifiers are accepted or
rejected.

If you want to remove an acceptance filter, call canAccept with the mask set to NULL_MASK.

To set the mask to 0xFO and the code to 0x60:

>>> from canlib import canlib

>>> ch = canlib.openChannel (channel=0)

>>> ch.canAccept(0x0f0, canlib.AcceptFilterFlag.SET_MASK_STD)
>>> ch.canAccept(0x060, canlib.AcceptFilterFlag.SET_CODE_STD)
>>> ...

>>> ch.close()

This code snippet will cause all messages having a standard (11-bit) identifier with bit 7 - bit 4 in the identifier equal
to 0110 (binary) will pass through. Other messages with standard identifiers will be rejected.

How acceptance filters can be used in a smaller project:

>>> from canlib import canlib

>>> ch = canlib.openChannel (channel=0)

>>> # The acceptance filter only have to be called once for each ch object
>>> ch.canAccept (0x0£f0, canlib.AcceptFilterFlag.SET_MASK_STD)

>>> ch.canAccept (0x060, canlib.AcceptFilterFlag.SET_CODE_STD)

>>> ...

>>> # We can now run the rest of the program and the acceptance filter
>>> # will reject unwanted CAN messages.

>>> while(True):

>>> frame = ch.read()

>>>

>>> ...

26 Chapter 1. Contents

canlib, Release 1.22.565

Code and Mask Format

Explanation of the code and mask format used by canAccept () and MessageFilter:

A binary 1 in a mask means “the corresponding bit in the code is relevant” A binary 0 in a mask means
“the corresponding bit in the code is not relevant” A relevant binary 1 in a code means “the corresponding
bit in the identifier must be 1~ A relevant binary 0 in a code means “the corresponding bit in the identifier
must be 0”

In other words, the message is accepted if ((code XOR id) AND mask) == 0.

Sending Messages

You transmit messages by calling write. Outgoing CAN messages are buffered in a transmit queue and sent on a
First-In First-Out basis. You can use writeSync to wait until the messages in the queue have been sent.

Sending a CAN message:

>>> from canlib import canlib, Frame
. with canlib.openChannel (channel=0) as ch:
ch.busOn()
frame = Frame(id_=234, data=[1,2])
ch.write(frame)
ch.bus0£f£f()

Using Extended CAN (CAN 2.0B)

“Standard” CAN has 11-bit identifiers in the range 0 - 2047. “Extended” CAN, also called CAN 2.0B, has 29-bit
identifiers. You specify which kind of identifiers you want to use in your call to canWrite(): if you set the EXT flag
in the flag argument, the message will be transmitted with a 29-bit identifier. Conversely, received 29-bit-identifier
messages have the EXT flag set.

The following code fragment sends a CAN message on an already open channel. The CAN message will have identifier
1234 (extended) and DLC = 8. The contents of the data bytes will be whatever the data array happens to contain:

>>> frame = Frame(id_=1234, data=[1,2,3,4,5,6,7,8], flags=canlib.MessageFlag.EXT)
>>> frame

Frame(id=1234, data=bytearray(b'\x01\x02\x03\x04\x05\x06\x07\x08"'), dlc=8, flags=
—.<MessageFlag.EXT: 4>, timestamp=None)

>>> ch.write(frame)

Object Buffers

Some of the Kvaser interfaces are equipped with hardware buffers for automatic sending and responding to messages.
They can be used when the timing conditions are strict, and might not be possible to fulfill on the application level.
The number of buffers are, depending on the device, typically limited to around 8 buffers.

There are two types of buffers, auto response and auto transmit.
* Auto response sends a defined message immediately upon receiving a message meeting some condition.

* Auto transmit sends a message periodically, with higher timing accuracy than can be achieved by an application
working through driver and operating system.

1.4. Using canlib (CANIib) 27

canlib, Release 1.22.565

The following example sets up an Auto response object buffer which responds with a CAN frame with CAN ID 200
when a CAN frame with CAN ID 100 is received.:

>>> from canlib import canlib, Frame

>>> ch = canlib.openChannel (0)

>>> msg_filter = canlib.objbuf.MessageFilter(code=100, mask=0xFFFF)

>>> frame = Frame(id_=200, data=[1, 2, 3, 4])

>>> response_buf = ch.allocate_response_objbuf(filter=msg_filter, frame=frame)
>>> response_buf.enable()

When creating the MessageFilter, you can use MessageFilter() to verify that the correct CAN ID will be filtered:

>>> msg_filter = canlib.objbuf.MessageFilter(code=100, mask=0xFFFF)
>>> msg_filter(100)

True

>>> msg_filter(110)

False

See also Code and Mask Format for an explanation of the code and mask format used by MessageFilter.

The following example sets up an Auto transmit buffer to periodically send a CAN frame with CAN ID 300 every
second, for 5 seconds.:

>>> from canlib import canlib, Frame

>>> ch = canlib.openChannel (0)

>>> frame = Frame(id_=300, data=[1, 2, 3, 4])

>>> periodic_buffer = ch.allocate_periodic_objbuf(period_us=1_000_000, frame=frame)
>>> periodic_buffer.set_msg_count(5)

>>> periodic_buffer.enable()

For more advanced usecases, see 1 Programming.

1.4.7 Bus Errors

Obtaining Bus Status Information

Use read_error_counters to read the error counters of the CAN controller. There are two such counters in a CAN
controller (they are required by the protocol definition). Not all CAN controllers allow access to the error counters, so
CANIib may provide you with an “educated guess” instead.

Use readStatus to obtain the bus status (error active, error passive, bus off; as defined by the CAN standard).

Overruns

If the CAN interface or the driver runs out of buffer space, or if the bus load is so high that the CAN controller can’t
keep up with the traffic, an overload condition is flagged to the application.

The driver will set the HiW_OVERRUN and/or SW_OVERRUN flags in the flag argument of read and its relatives. The
flag(s) will be set in the first message read from the driver after the overrun or overload condition happened.

Not all hardware platforms can detect the difference between hardware overruns and software overruns, so your appli-
cation should test for both conditions. You can use the symbol OVERRUN for this purpose.

28 Chapter 1. Contents

canlib, Release 1.22.565

Error Frames
When a CAN controller detects an error, it transmits an error frame. This is a special CAN message that causes all
other CAN controllers on the bus to notice that an error has occurred.

CANIib will report error frames to the application just like it reports any other CAN message, but the ERROR_FRAME
flag will be set in the flags parameter when e.g. read returns.

When an error frame is received, its identifier, DLC and data bytes will be undefined. You should test if a message is
an error frame before checking its identifier, DLC or data bytes.

In an healthy CAN system, error frames should rarely, if ever, occur. Error frames usually mean there is some type of
serious problem in the system, such as a bad connector, a bad cable, bus termination missing or faulty, or another node
transmitting at wrong bit rate, and so on.

1.4.8 Time Measurement
CAN messages are time stamped as they arrive. This time stamping is, depending on your hardware platform, done
either by the CAN interface hardware or by CANIib.

In the former case, the accuracy is pretty good, in the order of 1 - 10 microseconds; when CANIlib does the job, the
accuracy is more like 100 microseconds to 10 milliseconds and you may experience a rather large jitter. This is because
Windows is not a real-time operating system.

Use Channel . readTimer to read the current time, the return value is the current time using the clock of that channel.

Accuracy

The accuracy of the time stamps depends on the hardware.

The members of the Kvaser Leaf family have an onboard CPU. The time stamp accuracy varies (check the hardware
manual) but the high-end members have very precise time stamping. The accuracy can be as good as one microsecond
depending on the hardware. If more than one Leaf is used, their clocks are automatically kept in sync by the Kvaser
MagiSync™ technology.

Other CAN interfaces, like the Kvaser Leaf, LAPcan and USBcan II, have an on-board CPU and clock and provide
very accurate time stamps for incoming CAN messages. The accuracy is typically 10-20 microseconds.

Certain interfaces, like the PCIcan (PCI) series of boards, don’t have an on-board CPU so the driver relies on the clock
in the PC to timestamp the incoming messages. As Windows is not a real-time operating system, this gives an accuracy
which is in the order of one millisecond.

Resolution

The resolution of the time stamps is, by default, 1 ms. It can be changed to a better resolution if desired.

Use I0Control attribute timer_scale to change the resolution of the time stamps, if desired. This will not affect the
accuracy of the time stamps.

1.4. Using canlib (CANIib) 29

canlib, Release 1.22.565

1.4.9 Using Threads

Handles are thread-specific

CANIib supports programs with multiple threads as long as one important condition is met: A handle to a CAN circuit
should be used in only one thread.

This means that you cannot share e.g. canlib.Channel objects between threads. Each thread has to open its own
handle to the circuit.

Also note that you must call busOn and busOff once for each handle even if the handles are opened on the same
physical channel.

Local echo feature

If you are using the same channel via multiple handles, note that the default behaviour is that the different handles will
“hear” each other just as if each handle referred to a channel of its own. If you open, say, channel O from thread A
and thread B and then send a message from thread A, it will be “received” by thread B. This behaviour can be changed
using I0Control and local_txecho.

Init access

Init access means that the thread that owns the handle can set bit rate and CAN driver mode. Init access is the default.
At most one thread can have init access to any given channel. If you try to set the bit rate or CAN driver mode for a
handle to which you don’t have init access, the call will silently fail, unless you enable access error reporting by using
IOControl and report_access_errors. Access error reporting is by default off.

Using the same handle in different threads

In spite of what was said above, you can use a single handle in different threads, provided you create the appropriate
mutual exclusion mechanisms yourself. Two threads should never call CANIib simultaneously unless they are using
different handles.

1.4.10 t Programming

The Kvaser t programming language is event oriented and modeled after C. It can be used to customize the behavior
of the Kvaser Memorator v2 and other Kvaser t capable devices.

A t program is invoked via hooks, which are entry points that are executed at the occurrence of certain events. These
events can be, for example, the arrival of specific CAN messages, timer expiration, or external input.

Here we will describe how to interact with t programs on a Kvaser device (i.e. loading, starting, stopping) For a
complete reference to the t language, see the Kvaser t Programming Language available from https://www.kvaser.com/
downloads.

30 Chapter 1. Contents

https://www.kvaser.com/download/?utm_source=software&utm_ean=7330130980327&utm_status=latest
https://www.kvaser.com/downloads
https://www.kvaser.com/downloads

canlib, Release 1.22.565

Load and Unload t Program

The first step is to compile your t program into a .txe file, see the Kvaser t Programming Language. A compiled .txe
file may be examined using Txe:

>>> t = canlib.Txe("HelloWorld.txe")
>>> t.description
'This is my hello world program.'

Before starting a t program you need to load it into an available “slot”. Some Kvaser devices have multiple slots, and
are therefore capable of running multiple programs simultaneously.

To load a t program located on the host PC, use Channel.scriptLoadFile(). The canlib.Channel used deter-
mines the default channel for the loaded t program. If your channel was opened to a device’s second channel, the default
channel number will be set to 1 (the numbering of channel on the card starts from 0). You can read this value using
Channel.channel_data.chan_no_on_card

To load a t program located on the device, use Channel . scriptLoadFileOnDevice (). To copy arbitrary files to and
from the the device, use Channel. fileCopyToDevice () and Channel. fileCopyFromDevice () respectively.

To unload a stopped script, use Channel.scriptUnload().

You may use Channel.fileGetCount (), and Channel.fileGetName () to examine files located on the Kvaser
device, and Channel. fileDelete() to delete a specific file.

Note: Not all Kvaser devices support storing t programs and other files locally on the device (i.e. USBcan Pro
2xHS v2). Please refer to your device’s User Guide for more information. All User Guides may be downloaded from
www.kvaser.com/downloads.

Start and Stop a t Program
To start a previously loaded t program, use Channel.scriptStart (). You may stop a running script using Channel .

scriptStop(). To examine the status of a slot (i.e. if the slot is free or has a program loaded or running), use
Channel.scriptStatus().

Example

The following code fragment shows how to load the compiled t program “HelloWorld.txe” from the PC, and then start
and stop the t program:

>>> from canlib import canlib

>>> ch = canlib.openChannel (0)

>>> ch.scriptLoadFile(slot=0, filePathOnPC="C:/dev/HelloWorld.txe")
>>> ch.scriptStatus(slot=0)

<ScriptStatus.LOADED: 1>

>>> ch.scriptStart(slot=0)

>>> ch.scriptStatus(slot=0)

<ScriptStatus.RUNNING|LOADED: 3>

>>> ch.scriptStop(slot=0)

>>> ch.close()

1.4. Using canlib (CANIib) 31

https://www.kvaser.com/download/?utm_source=software&utm_ean=7330130980327&utm_status=latest
https://www.kvaser.com/download/#?categories=documentation

canlib, Release 1.22.565

Environment Variables

To communicate between the PC and your t program, you can use t Environment Variables (Envvar). When a t program
has been loaded, the Envvar defined in the t program can be accessed via Channel.envvar, however the t program

must be running in order to be able to set the value of an Envvar.

There are three types of Envvar in t; int, float, and char*. The first two are accessed as the corresponding Python
type, and the last is accessed using canlib.envvar.DataEnvVar which behaves as an array of bytes.

If we have a t program, envvar. txe, that set up three Envvar as follows:

envvar
{
int IntVal;
float FloatVal;
char DataVal[512];
}

on start {
envvarSetValue(IntVal, 0);
envvarSetValue(FloatVal, 15.0);
envvarSetValue(DataVal, "Fear not this night\nYou will not go astray");

}

The following example starts the t program envvar. txe and acesses it’s Envvar.

>>> fro